Friction & stopping distances: There is a lot behind these MARWIS values

Physics explained easily: What exactly does the new mobile road sensor MARWIS output “Friction” mean? How does this affect the driving behavior of a vehicle? Here, this will be explained by Karl Schedler. Out of the measurement of weather-related parameters on the road or airfield (such as ice percentage, water film height and surface temperature), the MARWIS calculates which average friction arises. The term friction can be translated into traction or friction coefficient between tire and road surface. The friction coefficient is defined as the ratio between the brake force and the normal force affecting the tire surface area in physical terms (through the weight of the vehicle loading the tire). This definition is equivalent to another definition which may be better applicable in practice: The “friction” is the ratio of the average braking deceleration (at full braking!) to the acceleration due to gravity (gravitational acceleration measures very roughly 10 m/s2). The braking deceleration is a negative acceleration (therefore a change of velocity per time unit) and also expressed in “m/s2”. The relation is a dimensionless number. If you know these connections, the change of the friction value can help to estimate the impact on traffic, because it allows specifying the extension of the stopping distance for a given initial speed. Friction is thus a measure of how slippery the road is.
Figures based on experience showed, that an average road surface, which has been exposed to the traffic for a longer time, has a friction value of at least 0.82 in dry conditions. In wet weather the value can be reduced down to 0.55. A snow-packed road can have values between 0.5 and 0.2. Black ice values between 0.3 and 0.1 can occur, according to the type of black ice. A friction reduction from 0.8 to 0.4 or from 0.6 to 0.3 means a doubling of the braking distance. From 0.8 to 0.2 a four time longer braking distance must be reckoned. The winter services should try to avoid weather-related friction values dropping below 0.6 – if possible.
Do you want to learn more about the mobile road weather sensor Lufft MARWIS? Check out our landing page. Do you have further questions on the sensor or are you interested in getting a demo product? Just ask our team, which is happy to help you.

You might also like these articles

Inn River, Innsbruck, Austria

Breaking Torrent Barriers in the Alps

Advanced monitoring and modeling techniques are improving torrent barrier design to better manage flooding in the Alps. Torrent barriers are crucial in managing the flow of water and sediment in...
Hydrology

Podcast: Finding the Optimum PV Plant Setup with Researchers from TU Delft

PV modules generate the largest amount of electricity when directly exposed to the sun. In theory, using two-axis trackers would maximize the yield. For obvious economic reasons, a fixed installation...
Solar Energy

Newsletter – SPOTTLIGHT 04/24

This is the web version of the OTT HydroMet Newsletter. If you want to receive the email, you can subscribe here by choosing 'Solutions, Products and News'.Dear Reader, Welcome to SPOTTLIGHT...
HydrologyMeteorologySolar Energy