A Four-Step Guide to Accurately Calculating Surface Water Discharge

Today, a wide range of government agencies, municipalities, utility companies, and private companies need to monitor water flow in rivers, streams, and canals for a variety of reasons ranging from predicting water availability and flood events to allocating water resources and planning for future development. At a high-level, these organizations are concerned with the water flow and discharge of the surface water in a particular area. More specifically, water discharge, which is the volume of water moving through the cross section of a stream or river during a particular unit of time, is typically computed by multiplying the area of water in a channel cross section by the average velocity of the water in that cross section. This measurement is commonly expressed in cubic feet per second or gallons per day. Discharge measurements also take into account any suspended solids, dissolved chemicals, or biologic materials that are transported in the water through the cross section as well.
This whitepaper will provide a general guide for taking the necessary steps to calculate accurate surface water discharge measurements, including considerations for selecting the most ideal monitoring site, the technologies available for various site conditions, and how to ensure your systems continuously provides accurate data through modern quality assurance and quality control (QA/QC) methods.

Discharge

Download the full white paper with step instructions to accurately calculating Surface Water Discharge – click here

More discharge product description for mobile and continuous application see at www.ott.com

 

You might also like these articles

OTT HydroMet Team at Intersolar Munich

Podcast: Back from #Intersolar2022 in Munich – Soiling & Solar PV in Eastern Europe

What a show it was! In May 2022, the solar industry has come together in Munich to celebrate its unbroken growth around the globe. In this episode of OTT CAST, ...
Solar Energy

River level monitoring lowers bridge scour risk

Engineers at Transport Scotland have investigated the potential for water level monitoring systems to help mitigate risks where transport infrastructure interacts with moving water. The trial was conducted at a bridge...
HydrologyMeteorology
Weather station Lufft WS600 at solar PV plant.

Building an Effective Meteorological Station for Solar PV

Weather conditions have a huge influence on photovoltaic output. Even intermittent cloud cover can have a dramatic effect on incident solar energy, while other factors like air temperature, wind direction...
MeteorologySolar Energy